a new class of banach sequence spaces

نویسندگان

p. azimi

چکیده

0

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Hereditarily $ell_p(c_0)$ Banach spaces

We extend the class of Banach sequence spaces constructed by Ledari, as presented in ''A class of hereditarily $ell_1$ Banach spaces without Schur property'' and obtain a new class of hereditarily $ell_p(c_0)$ Banach spaces for $1leq p<infty$. Some other properties of this spaces are studied.

متن کامل

A new metric invariant for Banach spaces

We show that if the Szlenk index of a Banach space X is larger than the first infinite ordinal ω or if the Szlenk index of its dual is larger than ω, then the tree of all finite sequences of integers equipped with the hyperbolic distance metrically embeds into X. We show that the converse is true when X is assumed to be reflexive. As an application, we exhibit new classes of Banach spaces that ...

متن کامل

On a class of functional differential equations in Banach spaces

The aim of this paper is to establish the existence of solutions and some properties of set solutions for a Cauchy problem with causal operator in a separable Banach space.

متن کامل

Algorithm for solving a new class of general mixed variational inequalities in Banach spaces

In this paper, a new concept of -proximal mapping for a proper subdifferentiable functional (which may not be convex) on a Banach space is introduced. An existence and Lipschitz continuity of the -proximal mapping are proved. By using properties of the -proximal mapping, a new class of general mixed variational inequalities is introduced and studied in Banach spaces. An existence theorem of sol...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۲۸، شماره No. ۲، صفحات ۵۷-۶۸

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023